Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners
نویسندگان
چکیده
Pure cultures of Geobacter sulfurreducens and other Fe(III)-reducing bacteria accumulated hydrogen to partial pressures of 5 to 70 Pa with acetate, butyrate, benzoate, ethanol, lactate, or glucose as the electron donor if electron release to an acceptor was limiting. G. sulfurreducens coupled acetate oxidation with electron transfer to an anaerobic partner bacterium in the absence of ferric iron or other electron acceptors. Cocultures of G. sulfurreducens and Wolinella succinogenes with nitrate as the electron acceptor degraded acetate efficiently and grew with doubling times of 6 to 8 h. The hydrogen partial pressures in these acetate-degrading cocultures were considerably lower, in the range of 0.02 to 0.04 Pa. From these values and the concentrations of the other reactants, it was calculated that in this cooperation the free energy change available to G. sulfurreducens should be about -53 kJ per mol of acetate oxidized, assuming complete conversion of acetate to CO2 and H2. However, growth yields (18.5 g of dry mass per mol of acetate for the coculture, about 14 g for G. sulfurreducens) indicated considerably higher energy gains. These yield data, measurement of hydrogen production rates, and calculation of the diffusive hydrogen flux indicated that electron transfer in these cocultures may not proceed exclusively via interspecies hydrogen transfer but may also proceed through an alternative carrier system with higher redox potential, e.g., a c-type cytochrome that was found to be excreted by G. sulfurreducens into the culture fluid. Syntrophic acetate degradation was also possible with G. sulfurreducens and Desulfovibrio desulfuricans CSN but only with nitrate as electron acceptor. These cultures produced cell yields of 4.5 g of dry mass per mol of acetate, to which both partners contributed at about equal rates. These results demonstrate that some Fe(III)-reducing bacteria can oxidize organic compounds under Fe(III) limitation with the production of hydrogen, and they provide the first example of rapid acetate oxidation via interspecies electron transfer at moderate temperature.
منابع مشابه
Syntrophic anaerobic photosynthesis via direct interspecies electron transfer
Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call 'syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electron...
متن کاملElectricity production by Geobacter sulfurreducens attached to electrodes.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The elect...
متن کاملSyntrophic growth via quinone-mediated interspecies electron transfer
The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy ...
متن کاملGrowth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at grow...
متن کاملRole of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens.
Geobacter sulfurreducens, an Fe(III)-reducing deltaproteobacterium found in anoxic subsurface environments, contains 4 NiFe hydrogenases. Hyb, a periplasmically oriented membrane-bound NiFe hydrogenase, is essential for hydrogen-dependent growth. The functions of the three other hydrogenases are unknown. We show here that the other periplasmically oriented membrane-bound NiFe hydrogenase, Hya, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 6 شماره
صفحات -
تاریخ انتشار 1998